开云app新闻
kyappxw
开云app新闻
kyappxw
联系我们
Contact us

联系人: 张生

手机: 13800000000

电话: 400-123-4567

邮箱: admin@zo-metal.com

地址: 武汉市青山区环厂西路1-29号8432室

开云app新闻

开云app官网:金属材料(精选5篇)

作者:小编 点击: 发布时间:2024-01-02 21:44:40

  难熔金属包括钨、钼、钽、铌、铼和钒六种,这六种金属均为熔点在2000摄氏度以上的材料。难熔金属材料及其和合金具有熔点高,在高温环境下强度高,对液态金属腐蚀抗性强、具有加工可塑性等共同点。难熔金属及其合金材料的的使用温度比高温合金要的多,一般在1100-3320摄氏度之间。

  铌合金在1100-1650摄氏度下的强度较高,它的焊接特性良好,具有很好的室温可塑性,同时作为难熔金属中密度最小的一种,能够加工制作成形状复杂的产品。按照合金强度不同可以将铌合金分为低强度、中强度和高强度三类,按照合金密度不同可以分为低密度、高密度两类。美国和俄罗斯对铌合金的研发各自不同,研究种类多达二十几种。美国以W、Hf、Mo作为铌的强化添加元素,俄罗斯则以Zr、W、Mo为主,第二相强化则主要是以C为主。

开云app官网:金属材料(精选5篇)(图1)

  钼合金的熔点相比于钽和钨较低,它的优点是弹性模值最高,且其密度、膨胀系数都较小,高温蠕变性能非常优秀。钼合金的焊接性能很好,焊缝的强度和可塑性都能达到一定的条件,其工艺性能在钨之上。但是它在低温环境下会脆化,高温环境下氧化问题严重。

  钼合金的开发当以俄罗斯为代表,按照合金元素的不同可以将钼合金划分为十四类,其中的添加元素主要是Ti、C、Re、Zr,同时也添加一些Ni、Nb、B等元素来改变材料的一些特性。

  在所有的钼添加元素中,只有铼对其低温环境下的可塑性有利;Re元素在提升钼的低温环境可塑性的同时,还可以提升其强度和焊接性能,明显降低其再结晶之后的脆裂趋势,显著提高其高温稳定性,对抗热震性尤其明显。

  钽合金的熔点高,膨胀系数小,其抗热震性能和塑造韧性都很优秀,它的缺点是在500摄氏度以上的环境中工作时,抗氧化性能很差,一般都要在表面进行抗氧化涂层处理。美国和俄罗斯先后研制出了在高温环境中蠕变性能和强度都符合要求的钽合金材料。

  钽合金使用与铌合金相似的涂层材料,铌合金是钽铌涂层的主要研究对象。在静态空气环境中,钽合金的多元难熔金属化合物表现出的抗氧化性能良好。

  钨合金涂层中最具有发展潜力的是具有高强度和高热稳定性能的硼化物和难溶氧化物保护层,钨合金涂层的研究方向是将具有自愈能力的硅化物覆盖在保护表面,难熔氧化物和硅化物的混合物则覆盖在有阻挡衬底的硅化物上,这样便可以使制品长时间工作在特定的使用环境中。

  随着技术的进步和市场的需求的复杂化,对难熔金属材料的质量要求越来越高,只有不断提高难熔金属材料的质量档次,才能获得更大的经济和社会效益。

  材料成分的优化主要是通过合金化和掺杂来实现的。这种方法可以很好的提高难熔金属材料的质量和性能。

  将钨和铼制作成为钨铼合金可以很好的提高材料的性能,使其兼具两种材料的优点,这种合金的熔点很高,强度和再结晶的温度比钨要高,而延性和脆性的转变温度则比钨低。还具有很好的焊接性能,抗腐蚀性能,电阻率高,电子逸出功率低,在电子等领域得到了广泛的应用。这种合金在退火后延性提高显著,这点与钨恰好相反。

  利用掺杂微量元素改变材料的再结晶性能,这样便能克服材料的再结晶脆性。譬如掺杂钼材料正在取代纯钼材料出现在特种的引出线 制造工艺的改善

  TZM是目前使用范围广,使用量大的一种钼很近,其使用环境主要是1000摄氏度以上的高温场合。但是TZM是一种脆性材料,很难对其进行热变形加工,若采用直接锻造,成品的产出率很低,因此改善制造工艺成为一个有效的途径。通过热挤压开坯之后锻造,同时控制好挤压和锻造之间的形变量和加热工艺便可以大大提高TZM合金棒的成品率。

  采用钼作为电极的玻璃熔炉来代替煤、油、汽等燃料加热方式是近几十年来快速发展的一种工艺。但是玻璃可能因为钼棒电极的杂质含量高而产生气泡或者着色,为了保障质量水平可以改善钼的烧结工艺,从而得到低氧、低碳的质量优秀的钼。

  为了提高钨钼丝的生产质量,大量的新设备被研制成功如:四模、六模、八模的多模细拉丝设备等,这些设备的推广使用可以很好的提升钨钼丝的产品质量。

  钨钼丝质量的进一步提升需要加强钨钼粉末冶制工艺中一些关键设备的研制,国外难熔金属的生产很大曾度上依靠生产设备的改善来实现。

  随着技术的进步和市场需求的变化,对难熔金属材料的多样性和高性能也提出了更高更新的要求。

  集成电路正朝着大规模的方向发展,这对溅射靶材在成分、特性和规格上提出了不同的要求,在冷压和真空环境中采用粉末冶金方法烧结的硅化钨具有很低的电阻率,同时期纯度高、密度大适合在MOS集成电路中使用。

  核电工业在世界范围内快速发展,用于燃料组件的控制棒导向管需要使用变截面的锆合金管,这种市场需求可以促进新产品的研发。

  难熔金属材料已经在许多领域得到大量的使用,不同的金属材料使用范围不同。同时技术的进步和市场需求的复杂化对难熔金属性能提出了更高的要求。本文介绍了难熔金属难熔金属材料钨、钼、钽、铌及其合金的应用和研究现状,分析了几种材料的优缺点,然后从材料成分的优化、制造工艺的改善、生产设备的改进、新产品的开发等方面对难熔金属材料质量的提高方法进行了分析和说明,为研制生产质量可靠,性能优越的难熔金属材料提供一些建议和途径。

  1、金属材料工程专业就业方向主要在冶金、材料结构研究与分析、金属材料及复合材料制备、金属材料成型等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作。

  2、金属材料工程专业培养具备金属材料科学与工程等方面的知识,能在冶金、材料结构研究与分析、金属材料及复合材料制备、金属材料成型等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。

  金属材料的选择和使用同其它各类材料一样,是一个比较复杂的问题。要正确选用材料,首先应对零件的特点和工作条件进行分析,比如零件的尺寸、精度要求,工作环境及负载等。要生产出高质量的产品,必须从产品的结构设计、选材、冷热工艺、生产成本等方面进行综合考虑。同时还要求材料有较好的加工工艺性能和经济性,以提高生产率,降低成本。

  各种机械产品,由于它们的用途、工作条件等的不同,对其组成的零部件也自然有着不同的要求,具体表现在受载大小、形式及性质的不同,受力状态、摩擦条件、工作环境等的不同。

  比如对于承受拉伸压缩载荷的零件,要求材料具有较好的抗压强度、屈服强度和屈服比。若这类零件受的载荷很大,可以选用35GrMo等合金调质钢,以满足屈服强度和高淬透性的要求;若这类零件受载荷较大,可以采用45钢等中碳优质碳素钢;若载荷不大,可选用碳素结构钢,如Q235等。

  像导轨、履带和轴承等承受摩擦磨损的载荷,对于这类零件首先应选择摩擦系数小的材料,而且必须有良好的性能。开云app官网选择材料时候,应该将相互配合的两个零件分开选材,对于结构复杂、制造工艺复杂、成本高的主要零件,应选择性能较好的材料,并且应有足够高的硬度。与之相配合的另一个零件应选择性能较差、硬度较低的材料,以便于更换,保证主零件有较长寿命,还能降低成本。

  另外,像轴类零件、齿轮等承受周期变载荷的零件,应选择具有较好弯曲疲劳强度的材料;飞轮、带轮等高速旋转还有惯性要求的零件,应选择屈服强度高的材料,防止由于在高速旋转时离心力作用下产生塑性变形;现如今,许多类型零件的用材已经专业化了,这些专业化的零件选材时不用在通用材料里选择,只需按零件的具体要求选择合适的牌号即可。

  设计零件时还可以通过对零件的失效分析进行选材。机械零件的失效形式有以下三种:①断裂失效,包括塑性断裂、疲劳断裂、蠕变断裂、低应力断裂、介质加速断裂;②过量变形失效,主要包括过量的弹性变形和塑形变形失效;③表面损伤的失效,如磨损、腐蚀、表面疲劳失效等。

  材料工艺性能的好坏,对零件加工的难易程度、生产效率和生产成本等方面都起着十分重要的作用。材料工艺性能的好坏,对单件和小批量生产来说并不显得十分突出,而在批量生产条件下,就明显地反映出它的重要性。

  切削加工性能:切削加工是最常用的金属加工方法。一般通过零件表面粗糙度、切削抗力大小、切屑排除的难易及切削刀具磨损程度来衡量其好坏。

  铸造性能:主要包括流动性、收缩率、偏析及产生裂纹、缩孔等。不同的材料,其铸造性能差异很大,在铁碳合金中铸铁的铸造性能要比铸钢好。

  压力加工性能:压力加工是通过冲压等方法,使用外力使零件形状发生改变的一种冷加工方法。一般来说,低碳钢、高碳钢和合金钢的压力加工性能依次降低。

  焊接性:一般以焊缝处出现裂纹、脆性、气孔或其他缺陷的倾向来衡量焊接性能的好坏。

  热处理工艺性:主要包括淬硬性、淬透性、淬火变形、开裂、回火脆性、回火稳定性等。

  生产方法、零件机构、零件材料之间存在相互依存又相互制约的关系。比如有的零件结构只存在一种合理的生产方法或者只能选用一种材料。也有一类零件结构可以有很多种生产方法,或者很多种材料可以选择。还有时应先根据零件的结构确定生产方法,根据确定下来的生产方法选择合适的材料。也可以先选择材料,再确定生产方法,最后设计结构。总之,不论用哪一种方法,都应使三者实现最佳的统一。

  金属零件的选材在满足零件使用性能和工艺性能的前提下,还应该注意材料的经济性。 对设计选材来说,保证经济性的前提是准确的计算。选材时应考虑满足使用性能和工艺性能的前提下,选用价格最低的材料,不能单纯追求某一项指标,应综合考虑全局。

  金属材料中碳钢和铸铁的价格低廉,在满足其他要求下,应首选碳钢和铸铁。低合金钢的强度高,工艺性能好,价格也比较低,也可以作为首选。总之,能用碳钢铸铁的不用合金钢;能用低合金钢的,不用高合金钢;能用普通钢的,不用不锈耐热钢。

  小批量生产结构简单的零件,材料费在零件制造成本中占的比例较大,而在大批量生产中,加工费则是制造成本的主要部分。因此,材料的工艺性对成本的影响很大,在选材时应考虑这方面的影响。

  同时,还应考虑原用材料的要求及具体零件的使用条件和对寿命的要求,若零件的使用性能很差,零件的寿命很短,则零件更换产生的费用也应考虑在内。也不可盲目选用高一级材料,以保证选用材料的经济性。

  此外,在选材时还应尽量立足于国内条件和国家资源,考虑到国内的生产和供应状况。同时应尽量减少材料的品种、规格等,以减少采购费用。这些都直接影响到选材的经济性。

  40多年以前,科学家们就认识到实际材料中的无序结构是不容忽视的。许多新发现的物理效应,诸如某些相转变、量子尺寸效应和有关的传输现象等,只出现在含有缺陷的有序固体中。事实上,如果多晶体中晶体区的特征尺度(晶粒或晶畴直径或薄膜厚度)达到某种特征长度时(如电子波长、平均自由程、共格长度、相关长度等),材料的性能将不仅依赖于晶格原子的交互作用,也受其维数、尺度的减小和高密度缺陷控制。有鉴于此,HGleitCr认为,如果能够合成出晶粒尺寸在纳米量级的多晶体,即主要由非共格界面构成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶体构成],其结构将与普通多晶体(晶粒大于lmm)或玻璃(有序度小于2nm)明显不同,称之为纳米晶体材料(nanocrystallinematerials)。后来,人们又将晶体区域或其它特征长度在纳米量级范围(小于100nn)的材料广义定义为纳米材料或纳米结构材料(nanostructuredmaterials)。由于其独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,其领域涉及物理、化学、生物、微电子等诸多学科。目前,广义的纳米材料的主要包括:

  l)清洁或涂层表面的金属、半导体或聚合物薄膜;2)人造超晶格和量子讲结构;功半结晶聚合物和聚合物混和物;4)纳米晶体和纳米玻璃材料;5)金属键、共价键或分子组元构成的纳米复合材料。

  经过最近十多年的研究与探索,现已在纳米材料制备方法、结构表征、物理和化学性能、实用化等方面取得显著进展,开云app官网研究成果日新月异,研究范围不断拓宽。本文主要从材料科学与工程的角度,介绍与评述纳米金属材料的某些研究进展。

  材料的纳米结构化可以通过多种制备途径来实现。这些方法可大致归类为两步过程和一步过程。两步过程是将预先制备的孤立纳米颗粒因结成块体材料。制备纳米颗粒的方法包括物理气相沉积(PVD)、化学气相沉积(CVD)、微波等离子体、低压火焰燃烧、电化学沉积、溶胶一凝胶过程、溶液的热分解和沉淀等,其中,PVD法以惰性气体冷凝法最具代表性。一步过程则是将外部能量引入或作用于母体材料,使其产生相或结构转变,直接制备出块体纳米材料。诸如,非晶材料晶化、快速凝固、高能机械球磨、严重塑性形变、滑动磨损、高能粒子辐照和火花蚀刻等。目前,关于制备科学的研究主要集中于两个方面:l)纳米粉末制备技术、理论机制和模型。目的是改进纳米材料的品质和产量;2)纳米粉末的固结技术。以获得密度和微结构可控的块体材料或表面覆层。

  原子扩散行为影响材料的许多性能,诸如蠕变、超塑性、电性能和烧结性等。纳米晶Co的自扩散系数比Cu的体扩散系数大14~16个量级,比Cu的晶界自扩散系数大3个量级。Wurshum等最近的工作表明:Fe在纳米晶N中的扩散系数远低于早期报道的结果。纳米晶Pd的界面扩散数据类似于普通的晶界扩散,这很可能是由于纳米粒子固结成的块状试样中的残留疏松的影响。他们还报道了Fe在非晶FeSiBNbCu(Finemete)晶化形成的复相纳米合金(由Fe3Si纳米金属间化合物和晶间的非晶相构成)中的扩散要比在非晶合金中快10~14倍,这是由于存在过剩的热平衡空位。Fe在Fe-Si纳米晶中的扩散由空位调节控制。

  目前,关于纳米材料的力学性能研究,包括硬度、断裂韧性、压缩和拉伸的应力一应变行为、应变速率敏感性、疲劳和蠕变等已经相当广泛。所研究的材料涉及不同方法制备的纯金属、合金、金属间化合物、复合材料和陶瓷。研究纳米材料本征力学性能的关键是获得内部没有(或很少)孔隙、杂质或裂纹的块状试样。由于试样内有各种缺陷,早期的许多研究结果已被最近取得的结果所否定。样品制备技术的日臻成熟与发展,使人们对纳米材料本征力学性能的认识不断深入。许多纳米纯金属的室温硬度比相应的粗晶高2~7倍。随着晶粒的减小,硬度增加的现象几乎是不同方法制备的样品的一致表现。早期的研究认为,纳米金属的弹性模量明显低于相应的粗晶材料。例如,纳米晶Pd的杨氏和剪切模量大约是相应全密度粗晶的70%。然而,最近的研究发现,这完全是样品中的缺陷造成的,纳米晶Pd和Cu的弹性常数与相应粗晶大致相同,屈服强度是退火粗晶的10~15倍。晶粒小子50nm的Cu韧性很低,总延伸率仅1%~4%,晶粒尺寸为110nm的Cu延伸率大于8%。从粗晶到15urn,Cu的硬度测量值满足HallPetch关系;小于15nm后,硬度随晶粒尺寸的变化趋于平缓,虽然硬度值很高,但仍比由粗晶数据技HallPetch关系外推或由硬度值转换的估计值低很多。不过,纳米晶Cu的压缩屈服强度与由粗晶数据的HallPetCh关系外推值和测量硬度的值(Hv/3)非常吻合,高密度纳米晶Cu牙DPd的压缩屈服强度可达到1GPa量级。

  尽管按照常规力学性能与晶粒尺寸关系外推,纳米材料应该既具有高强度,又有较高韧性。但迄今为止,得到的纳米金属材料的韧性都很低。晶粒小于25nm时,其断裂应变仅为<5%,远低于相应粗晶材料。主要原因是纳米晶体材料中存在各类缺陷、微观应力及界面状态等。用适当工艺制备的无缺陷、无微观应力的纳米晶体Cu,其拉伸应变量可高达30%,说明纳米金属材料的韧性可以大幅度提高。纳米材料的塑性变形机理研究有待深入。

  纳米晶金属间化合物的硬度测试值表明,随着晶粒的减小,在初始阶段(类似于纯金属盼情况)发生硬化,进一步减小晶粒,硬化的斜率减缓或者发生软化。由硬化转变为软化的行为是相当复杂的,但这些现象与样品的制备方法无关。材料的热处理和晶粒尺寸的变化可能导致微观结构和成份的变化,如晶界、致密性、相变、应力等,都可能影响晶粒尺寸与硬度的关系。

  研究纳米晶金属间化合物的主要动机是探索改进金属间化合物的室温韧性的可能性。Bohn等首先提出纳米晶金属化合物几种潜在的优越性。其中包括提高强度和韧性。Haubold及合作者研究了IGC法制备的NiAl的力学性能,但仅限于单一样品在不同温度退火后的硬度测量。Smith通过球磨NiAl得到晶粒尺寸从微米级至纳米级的样品,进行了微型盘弯曲试验,观察到含碳量低的材料略表现出韧性,而含碳多的材料没有韧性。最近Choudry等用双向盘弯曲试验研究了纳米晶NiAl,发现晶粒小于10nm时,屈服强度高干粗晶NiAl,且在室温下有韧性,对形变的贡献主要源于由扩散控制的晶界滑移。室温压缩实验显示由球磨粉末固结成的纳米晶Fe-28Al-2Cr具有良好的塑性(线),且屈服强度高(是粗晶的1O倍)。测量TiAl(平均晶粒尺寸约10nm)的压缩蠕变(高温下测量硬度随着恒载荷加载时间的变化)表明,在起始的快速蠕变之后,第二阶段蠕变非常缓慢,这意味着发生了扩散控制的形变过程。低温时(低于扩散蠕变开始温度),纳米晶的硬度变化很小。观察到的硬度随着温度升高而下降,原因之一是压头载荷使样品进一步致密化,而主要是因为材料流变加快。Mishra等报道,在750~950°C,10-5~10-3s-1的应变速率范围,纳米晶Ti-47.5Al-3Cr(g-TiAl)合金的形变应力指数约为6,说明其形变机制为攀移位错控制。

  值得注意的是,最近报道了用分子动力学计算机模拟研究纳米材料的致密化过程和形变。纳米Cu丝的模拟结果表明,高密度晶界对力学行为和塑性变形过程中的晶界迁移有显著影响。纳米晶(3~5nm)Ni在低温高载荷塑性变形的模拟结果显示,其塑性变形机制主是界面的粘滞流动、晶界运动和晶界旋转,不发生开裂和位错发散,这与粗晶材料是截然不同的。

  早期的研究发现。纳米晶Fe的饱和磁化强度试比普通块材a-Fe约低40%。Wagner等用小角中子散射(SANS)实验证实纳米晶Fe由铁磁性的晶粒和非铁磁性(或弱铁磁性)的界面区域构成,界面区域体积约占一半。纳米晶Fe的磁交互作用不仅限于单个晶粒,而且可以扩展越过界面,使数百个晶粒磁化排列。Daroezi等证实球磨形成的纳米晶Fe和Ni的饱和磁化强度与晶粒尺寸(50mm~7nm)无关,但纳米晶的饱和磁化曲线形状不同于微米晶材料。随着晶粒减小,矫顽力显著增加。Schaefer等报道,纳米晶Ni中界面原子的磁拒降低至0.34mB/原子(块状Ni为0.6mB/原子),界面组份的居里温度(545K)比块状晶体Ni的(630K)低。最近的研究还发现,制备时残留在纳米晶Ni中的内应力对磁性的影响很大,纳米晶Ni的饱和磁化强度与粗晶Ni基本相同。

  Yoshizawa等报道了快淬的FeCuNbSiB非晶在初生晶化后,软磁性能良好,可与被莫合金和最好的Co基调合金相媲美,且饱和磁化强度很高(Bs约为1.3T)。其典型成份为Fe73.5Cu1Nb3Si13.5B9称为Finemet。性能最佳的结构为a-Fe(Si)相(12~20nm)镶嵌在剩余的非晶格基体上。软磁性能好的原因之一被认为是铁磁交互作用。单个晶粒的局部磁晶体各向异性被有效地降低。其二是晶化处理后,形成富Si的a-Fe相,他和磁致伸缩系数ls下降到2′10-6。继Finemet之后,90年代初又发展了新一族纳米晶软磁合金Fe-Zr-(Cu)-B-(Si)系列(称为Nanoperm)。退火后,这类合金形成的bcc相晶粒尺寸为10~20nm,饱和磁化强度可达1.5~1.7T,磁导率达到48000(lkHz)。铁芯损耗低,例如,Fe86Zr7B6Cu1合金的铁芯损耗为66mW·g-1(在1T,50Hz条件下),比目前做变压器铁芯的Fe78Si9B13非晶合金和bccFe-3.5%Si合金小45%和95%,实用前景非常诱人。

  在催化剂材料中,反应的活性位置可以是表面上的团簇原子,或是表面上吸附的另一种物质。这些位置与表面结构、晶格缺陷和晶体的边角密切相关。由于纳米晶材料可以提供大量催化活性位置,因此很适宜作催化材料。事实上,早在术语纳米材料出现前几十年,已经出现许多纳米结构的催化材料,典型的如Rh/Al2O3、Pt/C之类金属纳米颗粒弥散在情性物质上的催化剂。已在石油化工、精细化工合成、汽车排气许多场合应用。

  Sakas等报道了纳米晶5%(inmass)Li-MgO(平均直径5.2nm,比表面面积750m2·g-1)的催化活性。它对甲烷向高级烃转化的催化效果很好,催化激活温度比普通Li浸渗的MgO至少低200°C,尽管略有烧结发生,纳米材料的平均活性也比普通材料高3.3倍。

  Ying及合作者利用惰性气氛冷凝法制成高度非化学当量的CeO2-x纳米晶体,作为CO还原SO2、CO氧化和CH4氧化的反应催化剂表现出很高的活性。活化温度低于超细的化学当量CeO2基材料。例如,选择性还原SO2为S的反应,可在500°C实现100%转换,而由化学沉淀得到的超细CeO2粉末,活化温度高达600°C。掺杂Cu的Cu-CeO2-x纳米复合材料可以使SO2的反应温度降低到420°C。另外,CeO2-x纳米晶在SO2还原反应中没有活性滞后,且具有超常的抗CO2毒化能力。还能使CO完全转化为CO2的氧化反应在低于100°C时进行,这对冷起动的汽车排气控制非常有利。值得注意的是这样的催化剂仅由较便宜的金属构成,毋须添加资金属元素。

  FeTi和Mg2Ni是贮氢材料的重要候选合金。其缺点是吸氢很慢,必须进行活化处理,即多次地进行吸氢----脱氢过程。Zaluski等最近报道,用球磨Mg和Ni粉末可直接形成化学当量的Mg2Ni,晶粒平均尺寸为20~30nm,吸氢性能比普通多晶材料好得多。普通多晶Mg2Ni的吸氢只能在高温下进行(如果氢压力小于20Pa,温度必须高于250°C),低温吸氢则需要长时间和高的氢压力,例如200°C、120bar(lbar=0.1Mpa),2天。纳米晶Mg2Ni在200°C以下,即可吸氢,毋须活化处理。300°C第一次氢化循环后,含氢可达~3.4%(inmass)。在以后的循环过程中,吸氢比普通多晶材料快4倍。纳米晶FeTi的吸氢活化性能明显优于普通多晶材料。普通多晶FeTi的活化过程是:在线中退火、冷却至室温再暴露于压力较高(35~65Pa)的氢中,激活过程需重复几次。而球磨形成的纳米晶FeTi只需在400℃线h,便足以完成全部的氢吸收循环。纳米晶FeTi合金由纳米晶粒和高度无序的晶界区域(约占材料的20%~30%)构成。4纳米材料应用示例

  纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。

  Finemet族合金已经由日本的HitachiSpecialMetals,德国的VacuumschmelzeGmbH和法国的Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的AlpsElectricCo.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。

  电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。

  Al基纳米复合材料以其超高强度(可达到1.6GPa)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为0.8~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为GigasTM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑:在1s-1的高应变速率下,延伸率大于500%。


相关标签:
热门产品